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What Statistical thermodynamics studies?

* Solid melts.
* Crystal grows.

* Chemicals react and take up energy or give it
off.

* Protein catalyze biological reactions
* What forces drive these processes?

e Statistical thermodynamics model the
molecular forces to drive these processes.



Entropy and energy

We can measure the density, temperature, pressure,
capacity, molecular radius... to understand this process.

But, we cannot simply predict the tendency and
equilibria of system.

To predict the equilibria, we must step into a different
world. Energy, entropy, enthalpy and free energy.

For instance, water boils at 100°C. But measure the
density of water at 98 °C, we do not know the sudden
change at 100°C.

To predict the density change, we need to know the
driving force, the entropies and the energies.



Entropy

* Describes the tendency of matter towards
disorder.

* Entropy explains heat flows from hot object to
cold object.

* How protein molecules tangle together in
some disease state.



Probability

* P=n,/N

N=total number of possible outcome

* n,=the outcomes fall into catalog A

3 Colors x 2 Models 6 Combinations

Figure 1.1 |If there are three car colors for each of two car models, there are six
different combinations of color and model, so the multiplicity is six.



Multiplication rule

If outcome A, B are independent, then the
probability of observing A and B is

P(A AND B)=P,P,

* What is the probability of getting 4 heads on 4
successive flips of an unbiased coin?

 What is the probability of getting one heads,
then one tail, then two heads on 4 successive
coin flips? (In this specific order)



Examples for Multiplication rule

In previous example, what is the probability of
the specific sequence of 4 coin flips, HTHH?

What is the probability of obtaining 3H and 1T
in any order?

HHHT, HHTH, HTHH, THHH
4 out of 16 possible outcomes



Permutations of ordered sequences

How many permutations of ordered
sequences of the letter w, x, y and z?

For instance, wxyz, wyzx
15t [etter can be any 1 of the character
2d [etter can be one of the 3 letters

W=4x3x2x1



Permutations of ordered sequences

* |n general, a sequence of N distinguishable
objects, the number of different permutations

o« W=N!



Counting sequences of distinguishable
and indistinguishable objects

* How many sequence can we arrange (H,A,A,)?
* (HA/A, ) (AHA,) (AAH)

(HALA,) (A,HA,) (A,A H)

e W=3I

If A, and A, are indistinguishable,

(A,HA,) = (A,AH)

o W=31/2]



Number of permutations

In general, for a collection of N objects with ¢ categories, OI WILCIL 71j UJJELLS L
each category are indistinguishable from one another, but distinguishable from
the objects in the other t — 1 categories, the number of permutations W is

N!

W = 3 (1.18)
nilno! - - - ng!

When there are only two categories (success/failure, or heads/tails, sl =3 2
so W(n, N), the number of sequences with n successes out of N ftrials, is

N N!
W(n,N) = (n> = (1.19)
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Number of permutations from
indistinguishable objects

EXAMPLE 1.15 Counting sequences of coin flips and die rolls. You 1p a
coin N = 4 times. How many different sequences have three heads? According

to Equation (1.19),
N! 4!

Win  N) = =
W Nt a0

They are THHH, HTHH, HHTH, and HHHT. How many different sequences
have two heads?
!

4
W(2,4) = 511 " 6.

They are TTHH, HHTT, THTH, HTHT, THHT, and HTTH.
You flip a coin one hundred and seventeen times. How many different
sequences have thirty-six heads?

117!
36!81!

p(ng) Figure 1.5 The probability distribution
for the numbers of heads in four coin
flips in Example 1.18.

’ooh.u

W(36,117) = ~ 1.84 x10°%

N
N
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Number of permutations from
indistinguishable objects

You roll a die fifteen times. How many different sequences have three 1°s,
one 2, one 3, five 4’s, two 5’s, and three 6’s? According to Equation (1.18),

. 15!
311111512131

W =151, 351200
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Bose-Einstein condensates

EXAMPLE 1.17 Bose-Einstein statistics. How many ways cann indistinguish-
able particles be put into M boxes, with any number of particles per box? This
type of counting is needed to predict the properties of particles called bosons,
such as photons and He* atoms. Bose-FEinstein statistics counts the ways thatn
particles can be distributed in M different energy levels, when several particles
can occupy the same quantum mechanical energy levels. For now, our interest
is not in the physics, but just in the counting problem. Figure 1.3 shows that
one way to count the number of arrangements is to think of the system as a
linear array of n particles interspersed with M — 1 movable walls that partition
the system into M boxes (spaces between walls). There are M + n — 1 objects,
counting walls plus particles. The n particles are indistinguishable from each
other. The M — 1 walls are indistinguishable from the other walls. Because the
walls are distinguishable from the particles, the number of arrangements is

(M+n-1)!
(M -1)n! ~

(1.20)

Wmn,M) =

(a) Balls in Boxes
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Bose-Einstein particles in
two boxes for Example 1.17:
(@) There are four ways to
partition n = 3 balls into

= 2 boxes when each box
can hold any number of
balls. (b) There are also four
ways to partition three balls
and one movable wall.

=



What are Extremum Principles?

The forces on atoms and molecules can be

described in terms of two tendency, energy and
entropy.

Molecules react, change conformations, bind,
and undergo chemical and physical changes, in
the way to reach the minimum energy and
maximum entropy.

We can predict the tendencies of the matters by
computing the minima or the maxima of a certain
mathematical function.

Extremum principles or variational principles.



Mechanical equilibrium

e A ball rolls down until it reaches the bottom
and stay at the bottom, equilibrium position.

(x)

0
X

igure 2.1 The equilibrium
osition x* = 0 for a ball in
quadratic valley has the
1linimum potential energy

4 &R

Figure 2.3 Neutral.

Figure 2.5 Unstable.



Extremeum principle: Maximizing multiplicity
predicts the most probable outcomes.

Table2.1 N=4

For instance, flipping a « L
. o -+ 0
coin 4 times.

4

__:1

04

4!

— =4 1.386
? 113

4

i 2

212

Which composition is 1792
more probable? L e
O T g

3HIT or 4H memyrs

n w In W
10 1 0.0
9 10 2.303
8 45 3.807
7 120 4.787
6 10 5.347
5 52 5.529
- 10 5.347
3 120 4,787
2 45 3.807
1 10 2.303
0 1 0.0

Total W = 1024
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No of head, nin fllpplng the coin N

times
W (n,N) =N!/N!(N-n)! il
* W(50,100)=1.01x102°
* W(25,100) = 2.43x10%3 /\

A

0 500 1000
n

Figure 2.6 The multiplicity
function W of the number of
aaaaaaaaaaaaaaaaaaaaaaaa
number of trials N
eeeeeeeeee



Lattice model to explain why gas molecules spread out
into a large volume.

Figure 2.7 For Example 2.2, Case A, Case Configuration Volume
three particles are distributed
throughout M4 = 5 sites. In Case B, A
three particles are in My = 4 sites. In
Case C the three particles fill Mc = 3 B 4
sites. :

C

Multiplicity = W(N,M)

N= number of particle

M= number of lattice site
WA(3,5)=10 possible arrangments
WB(3,4)=4

WC(C(3,3)=1

If the system has only 3 possible volume, then the probabily is
p.=1/(10+4+1)

Pg=4/15 and p,=10/15 (which is most probable.)

20



Why do materials diffuse?

Case Left Right Figure 2.8 For Example 2.3, Case A,
| the composition is two @ and two &

—e— ] — particles on the left, and two @ and two
A ) &, 4 b 4 « on the right. In Case B, the

- 7z composition is three @ and one J on

the left and one @ and three @ on the
right. In Case C the composition is four
) s @ and zero J on the left, and zero @
i and four & on the right.

0

’

Permeable Barrier —




Why do materials diffuse?

Case Figure 2.8 For Example 2.3, Case A,
the composition is two @ and two &
. particles on the left, and two @ and two
« on the right. In Case B, the
B composition is three @ and one J on

— - A the left and one @ and three @ on the
c right. In Case C the composition is four
L‘L‘L‘!!! @ and zero J on the left, and zero @

and four J on the right.

Permeable Barrier —» PT

Once again, the statistical mechanical approach is to assume that each spa-
tial configuration (sequence) is equally probable. Find the most probable mix-
ture by maximizing the multiplicity of arrangements. For each given value of
left and right compositions, the total multiplicity is the product of the mulii-
plicities for the left and the right sides:

41 4l

Case A: W = W (left) - W(right) = 550, = 36
. _ 4 4
Case B: W = W (left) - W(right) = 773577 = 16.

. 41 4
Case C: W =W (left) - W(right) = 5716/ = 1.
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Why do material absorb energy?

For instance 3 distinguishable particles.

What is the total number W(U) of ways that the system can
partition its energy?

There are more arrangements of a system that have a high
energy than a low energy.

0
2 0 0
00 2
&
3 —_—
2—@ | |
09— Case D
U=0,W=1
O T )
1000
01 1
&
3 —
3 29 - Figure 3.7 Each case represents a system with a
0-Qg——1 given energy U. Each card represents a different
distribution of the three particles over the four energy
Case B levels. The numbers shown at the top of each card are
U=2,W=6 the individual energies of the particles. W is the
JLsT number of configurations (cards).
13
S
1D
0 —
Case A
U=3,W=10
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Why does energy exchange?

,nuonuoouolll
e W=
zﬂi—m—

i ; =
= |is
50000000011 E0000001111
1 39 1 ——— 99
0 99999999 — 0 999999 —
System A System B
Uy=2,Wy=45 Ug =4, Wg=210

Figure 3.9 Energy-level diagrams for the two different systems in Example 3.4 with
ten particles each. System A has total energy Us = 2, and B has Up = 4. System B has
the greater multiplicity of states.

EXAMPLE 3.4 Why does energy exchange? Consider the two systems, A and
B, shown in Figure 3.9. Each system has ten particles and only two energy levels,
€ = 0 or £ = 1 for each particle. The binomial statistics of coin flips applies to
this simple model.

Systems A and B are identical except that A has less energy than B. System
A has two particles in the ‘excited state’ (¢ = 1), and eight in the ‘ground state’
(¢ = 0) so the total energy is Us = 2. System B has four in the excited state
and six in the ground state so Up = 4. In this case, heat flows from B (higher
energy) to A (lower energy) because doing so increases the multiplicity. 1efs

see how.
The multiplicities of isolated systems A and B are
10! 10!
WA = @ =45, and Wp = 211—6? = 210,



Why does energy exchange?
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Figure 3.9 Energy-level diagrams for the two different systems in Example 3.4 with
ten particles each. System A has total energy Us = 2, and B has Up = 4. System B has

the greater multiplicity of states.

EXAMPLE 3.4 Why does energy exchange? Consider the two systems, A and
B, shown in Figure 3.9. Each system has ten particles and only two energy levels,
€ = 0 or € = 1 for each particle. The binomial statistics of coin flips applies to
this simple model.

Systems A and B are identical except that A has less energy than B. System
A has two particles in the ‘excited state’ (¢ = 1), and eight in the ‘ground state’
(¢ = 0) so the total energy is U4 = 2. System B has four in the excited state
and six in the ground state so Uz = 4. In this case, heat flows from B (higher
energy) to A (lower energy) because doing so increases the multiplicity. Let’s
see how.

The multiplicities of isolated systems A and B are

10! 10!

= E@ = 45, and Wz — = 210.

Wa T 416!

If A and B do not exchange energies, the total multiplicity is Wiota = WaWp =
9450. Now suppose that you bring A and B into ‘thermal contact’ so that they
can exchange energy. Now the system can change values of U, and Ug subject
to conservation of energy (U + Ug will be unchanged). One possibility is Ua = 3
and Uy = 3. Then the total multiplicity Wiora will be
10! 10!
Wtotal = ﬁﬁ = 14400

This shows that a principle of maximum multiplicity predicts that heat will flow
to equalize energies in this case. Consider the alternative. Suppose A were to
lower its energy to U, = 1 while B wound up with Ug = 5. Then the multiplicity
of states would be
10! 10! =

A maximum-multiplicity principle predicts that this inequitable distribution is
unlikely. That is, heat will not flow from the cold to the hot object.

Wiotal =

25



However, energy does not always flow

downbhill.

EXAMPLE 3.5 However, energy doesn’t always flow downhill. Example 3.4
predicts that energies tend to equalize. But here’s a more interesting case that
shows that the tendency to maximize multiplicity does not always result in a
@raining of energy from higher to lower. Again system A has ten particles and
@n energy U, = 2. However, now system B is smaller, with only four particles,
and has energy Up = 2. The energies of A and B are equal. The multiplicity is

¥ | 41
B, - 10

i —2!—8—!2!2!=45X6=270.

Now suppose that A and B come into thermal contact and the lgrger system
absorbs energy from the smaller one, so Us = 3 and Up = 1. This causes the
multiplicity to increase:

10! 4!

W=WAWB=—3—!7E1—!§=120X4=480.
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Summary

e Systems tend towards their states of

maximum multiplicity (or maximum number
of microstates).

* Every microstate is equally probable.



Announcements

 Homework and lecture notes can be
downloaded from the website of Ms Ma.

* 1S Homework will be uploaded to the website
this Thursday.

* Please work independently.



Math tools to find the extremum of a a
multivariate functions

and

(X0, Vo)

29



Find the minimum of a paraboloid
subject to a constraint.

Figure 5.8 The global minimum of f(x,) = x2 + y?
is (x*,y*) = (0,0). But the minimum of f(x,y) on the
plane g(x,y) =x+y =6s (x*,9%) =(3,3):

Method of Lagrange multiplier

0,0, = (5).E),
ax)y—/\ ax /s o oy ), 0y )

Method of Lagrange multiplier
with 2 constraints.

=g - [(2) 1(22) -5 (22)]as -0

i=1

30



Classwork

Figure 5.8 The global minimum of f(x,¥) = x2 + y?
is (x*,y*) = (0,0). But the minimum of f(x,y) on the
plane g(x,y) =x+y =61s (x*,v%) =(3,3).

Fles ) = X445 ¥°

y . (xp*) =(3,3)

EXAMPLE 5.6 Finding the minimum of a paraboloid with Lagrange multipli-
ers. Againlet’s find the minimum of the paraboloid f (x, ) = x2+y? subject
to g(x,y) = x + y = 6. But now let’s use the Lagrange multiplier method. We
have (0g/0x) = (8g/dy) = 1. According to the Lagrange method, the solution
will be given by

af = a9 =

(—ax>y e (——ax)y — - Oxt X (5.23)
) (%9 —

(a )x = (6y)x =i 2yt o (5.24)

Combining Equations (5.23) and (5.24), and using x + y = 6, gives
B 2y — yr*=x*=3 (5.25)
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Instantaneous configurations

If, as a result of collisions, the system were to fluctuate between the configurations
{N,0,0, ...} and {N — 2,2,0, ...}, it would almost always be found in the second,
more likely state (especially if N were large). In other words, a system free to switch
between the two configurations would show properties characteristic almost exclus-
ively of the second configuration. A general configuration {ny,n,, . . . } can be achieved
in W different ways, where W is called the weight of the configuration. The weight of

the configuration {#g,n,, . .. } is given by the expression
N!
= (16.1)
R

It will turn out to be more convenient to deal with the natural logarithm of the
weight, In W, rather than with the weight itself. We shall therefore need the expression

N!
In W=ln——————=In N!—In(nyln!n,!.--)
nglm it ...

=InN!-(Inny!+Inn!+Inn!+---)
=IHN!—2]nni!
i

where in the first line we have used In(x/y) =In x —In y and in the second In xy=1In x
+1n y. One reason for introducing In Wis that it is easier to make approximations. In
particular, we can simplify the factorials by using Stirling’s approximation in the form

Inx'=xInx—x (16.2)

Then the approximate expression for the weight is

In W=(NInN—-N) - z{n,-ln m;—n)=NInN-— 21’1;11‘1 n. (16.3)
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Boltzmann distribution

We remarked in Section 16.1 that In W is easier to handle than W.
Therefore, to find the form of the Boltzmann distribution, we look
for the condition for In W being a maximum rather than dealing
directly with W. Because In W depends on all the 2, when a
configuration changes and the 1, change to 7, + dn,, the function
In W changes to In W+d In W, where

All this expression states is that a change in In Wis the sum of
contributions arising from changes in each value of 1. At a
maximum, d In W= 0. However, when the #; change, they do so
subject to the two constraints

Dedn=0 3 dn=0 (16.48)
i ]

We employ the technique as follows. The two constraints in eqn
16.48 are multiplied by the constants —ff and ¢, respectively (the
minus sign in —f has been included for future convenience), and then
added to the expression for d In W:

dln W= 2( )dni - (XZdn, - BZE, dn,
:Z{ (alan W] + a—ﬁs,-}dn,-
i %

Jdln W
on
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Boltzmann distribution

All the dn; are now treated as independent. Hence the only way of
satisfying d In W= 0 is to require that, for each 1,

dlnw
+a—Pe=0 (16.49)
on

when the 7, have their most probable values.
Differentiation of In W as given in eqn 16.3 with respect to n, gives

i

oln W B(NlnN) za(n In )

on;

The derivative of the first term is obtained as follows:
J(NInN) oN dinN
——— = —|mN+N

o, m; on,
oN
:]nN-I-_:lI"lN"'l

H;

The In N in the first term on the right in the second line arises because

N=mn,+n,+- - - and so the derivative of N with respect to any of the
n;is 1: that is, IN/dn; = 1. The second term on the right in the second
line arises because d(In N)/dn, = (1/N)ON/On,. The final 1 is then
obtained in the same way as in the preceding remark, by using

ON/In; = 1.
For the derivative of the second term we first note that

dlnn - on;
on, an

Morever, if i # j, n; is independent of 7;, so 9n;/dn; = 0. However, if

1=j,

Sies! NIt

dn; On
Therefore,

L

with & the Kronecker delta (8 = 1 if2 = j, &, = 0 otherwise). Then

d(m Inn, d dl
2(tlnanvr 2{{ n; ]lnv,-&-n[ un
r /

_ZI ( o f) Jln n,+i‘;%’:{-”

f \ (Il

—Z( l[uu +1)

= 25;',".ln n+ =lhn+1

J

34



Boltzmann distribution

and therefore
() Inw

an

"
=~(Ina;+ 1} +{In N 4 l):——-!n};';

1t foliows from eqn 16.49 that
In— 4+ ¢t~ fig, = 0
“In—+a- fig, =
N t

and therefore that

"
! _‘lu "-‘.Z

N
At this stage we note that

N = z n, = z Nt < !v'n:"z v
1 2

Because the N cancels on each side of this equality, it follows that

: I
&= Z (16.50})
eV
7
and
"i i . - 1 "
—_ =BG = G o

N z e,
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Pressure of atmosphere

F 10.1 Barometric pressure of the atmosphere. The energy ¢ of a
in the earth’s gravitational field is a function of altitude z:

(10.12)

s the gravitational constant and m is the molecular mass. In this
snergy is a continuous function (of z), not a discrete ladder, but

law still applies. We assume that the atmosphere is in equilib-
nly approximately) and is at constant temperature. The number

of molecules N(z) at altitude z relative to the number N (0) at sea level is give
by the Boltzmann law,

M = e—f(Z)/kT — p~Mgz/KT
N(0)
If the gas is ideal and the temperature is constant, the pressure p(z) is pro
portional to the number of molecules per unit volume, so the pressure should
decrease exponentially with altitude:

p(2) _N@KT/V _N@) _  mgepr
p(0) N(KT/V _ N(0) '

Figure 10.3 shows experimental evidence that the temperature is reasonably
constant for the earth’s atmosphere up to about 100 km above the earth’s sur-
face, and it shows that the pressure decreases exponentially with altitude, as
predicted. Above about 100 km, the equilibrium assumption no longer holds
because the atmosphere becomes too thin for normal wind turbulence to mix
the gases, and the temperature is no longer independent of altitude.

(10.13

(10.14)

300

1000 1800

z (km)
100

0
10—10

Figure 10.3 The temperature T (

107 1072 102
p (mbar)

) of the

atmosphere is approximately constant up to about

100 km in altitude z. The pressure p (- — -) decreases
exponentially with altitude, following the Boltzmann law.
Source: ML Salby, Fundamentals of Atmospheric Physics,
Academic Press, San Diego, 1996. Data are from: US
Standard Atmosphere, NOAA, US Air Force, US
Government Printing Office, NOAA-S/T 76-1562,
Washington, DC, 1976.
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Partition function of a uniform ladder
of energy levels

Example 16.2 Evaluating the partition function for a uniform ladder of energy levels

Evaluate the partition function for a molecule with an infinite number of equally
spaced nondegenerate energy levels (Fig. 16.3). These levels can be thought of as the
vibrational energy levels of a diatomic molecule in the harmonic approximation.

Method We expect the partition function to increase from | at T=0and approach
infinity as T to o. To evaluate eqn 16.8 explicitly, note that

1
l+x+x24+- i =——
1-x

Answer If the separation of neighbouring levels is &, the partition function is

; e 1
g=l+ePrpePey .. =1 pePey(ef)ly.. .=
1-¢Pe

This expression is plotted in Fig. 16.4: notice that, as anticipated, g rises from 1 to
infinity as the temperature 1s raised.

3¢
2¢

Fig. 16.3 The equally spaced infinite array of
energy levels used in the calculation of the
partition function. A harmonic oscillator
has the same spectrum of levels.
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To find a biased die.

e ;e 1=l g =82 B

- = — -— . (.16
?P,’ }'eux«me-,‘z, Z‘, £y
=] inl I=l

& statistical mechanics, this is called the Boltzmann distribution law and the
o ntity in the denominator is called the partition function g,

!
=S o
=D e P, (6.17)
=i
Ing Equations {6,111} and {6.16) you can express the average score per roll {€)
Muation (6.9)) in terms of the distribution,

1 U
_ AU | gt
_.)z.z;t.p, - ‘—’gw be, {6.18)

3 Xt two examples show haw Equation (6.18) predicts all £ of the p's from
known guantity, the average score. '

y 3Hndlng bias in dice by using the exponential distribution Law,
strate how to predict the maximum  entropy distribution when
score is known.  Suppose a die has ¢« G faces and the scores
face indices, £(f) = i, Letx = e . Then Equation (6.17) gives
x! + x4 x5 4 x5 and Equation (6.16) gives

x!

= i- Pl T (6.19)

XA XL 4 xT 4t D = X0

aint Equation (6.18), you have

_-xo.Zx"‘ +3x) + dxt 4 5x7 + 6l
Xex* e xt 4 xt x5+ x6

> (6.20)

al, Equation (6.20), that yau must solve for the one un-
i for solving palynomials like Equation (6.20) is given on
begin with knowledge of {£). Compute the value x* that solves
'&lh&lft]ute X* Into Equations (G, 19) to give the distribu-
Ny P, -
you cbserve the average score (£} = 3.5, then x = 1 satisfies
ting p « 1/6 forall 4, indicating that the die is unbiased
thon (see Flgure 6.3(a)k
we the average scoreis (7} = 3.0, then x = 0.84 satisfies
have g = 0,84+ 0.84% < 0.84% + 0.84° +0.84% + 0.84" =
are py = 0.84/3.41 = 0.25, p; = 0.84%/341 = 0.21,
, and 50 on, as shown in Flgure 6.3(b)

(a) (&) =3.5
Pi

0.167

Figure 6.3 The probabilities of dice
outcomes for known average scores.
(a) If the average score per roll is

(&) = 3.5, then x = 1 and all outcomes
are equally probable, predicting that
the die is unbiased. (b) If the average
score is low ((&) = 3.0, x = 0.84),
maximum entropy predicts an
exponentially diminishing
distribution. (c) If the average score is
high ((&) = 4.0, x = 1.19), maximum
entropy implies an exponentially
increasing distribution.

(b) (&) =3.0
Pi
L2
{'\ 0.21
017 915
4 ‘0.12 0.10‘
1 2 3 4 5 6
i
(c) (&) =4.0
Pi
0.25
017 021 =
S oo U
0510 ==
1 2 3 4 5 6
i
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